A Mutation Operator Accelerated Quantum-Behaved Particle Swarm Optimization Algorithm for Hyperspectral Endmember Extraction
نویسندگان
چکیده
The endmember extraction algorithm, which selects a collection of pure signature spectra for different materials, plays an important role in hyperspectral unmixing. In this paper, the endmember extraction algorithm is described as a combinatorial optimization problem and a novel Mutation Operator Accelerated Quantum-Behaved Particle Swarm Optimization (MOAQPSO) algorithm is proposed. The proposed approach employs Quantum-Behaved Particle Swarm Optimization (QPSO) to find endmembers with good performances. To the best of our knowledge, this is the first time that QPSO has been introduced into hyperspectral endmember extraction. In order to follow the law of particle movement, a high-dimensional particle definition is proposed. In addition, in order to avoid falling into a local optimum, a mutation operation is used to increase the population diversity. The proposed MOAQPSO algorithm was evaluated on both synthetic and real hyperspectral data sets. The experimental results indicated that the proposed method obtained better results than other state-of-the-art algorithms, including Vertex Component Analysis (VCA), N-FINDR, and Discrete Particle Swarm Optimization (D-PSO).
منابع مشابه
OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملA Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization
Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by in...
متن کاملMultiobjective Optimized Endmember Extraction for Hyperspectral Image
Endmember extraction (EE) is one of the most important issues in hyperspectral mixture analysis. It is also a challenging task due to the intrinsic complexity of remote sensing images and the lack of priori knowledge. In recent years, a number of EE methods have been developed, where several different optimization objectives have been proposed from different perspectives. In all of these method...
متن کاملGaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm that shares many similarities with evolutionary computation techniques. However, the PSO is driven by the simulation of a social psychological metaphor motivated by collective behaviors of bird and other social organisms instead of the survival of the fittest individual. Inspired by the classical PSO method and...
متن کاملA quantum particle swarm optimizer with chaotic mutation operator
Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm that shares many similarities with evolutionary computation techniques. However, the PSO is driven by the simulation of a social psychological metaphor motivated by collective behaviors of bird and other social organisms instead of the survival of the fittest individual. Inspired by the classical PSO method and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017